Fermentation

Written by Andrew on January 1, 2022

Intro

Fermentation takes place in fermentation vessels which come in various forms, from enormous cylindroconical vessels, through open stone vessels, to wooden vats. After the wort is cooled and aerated – usually with sterile air – yeast is added to it, and it begins to ferment. It is during this stage that sugars won from the malt are converted into alcohol and carbon dioxide, and the product can be called beer for the first time.

Most breweries today use cylindroconical vessels, or CCVs, which have a conical bottom and a cylindrical top. The cone’s angle is typically around 60°, an angle that will allow the yeast to flow towards the cone’s apex but is not so steep as to take up too much vertical space. CCVs can handle both fermenting and conditioning in the same tank. At the end of fermentation, the yeast and other solids which have fallen to the cone’s apex can be simply flushed out of a port at the apex. Open fermentation vessels are also used, often for show in brewpubs, and in Europe in wheat beer fermentation. These vessels have no tops, which makes harvesting top-fermenting yeasts very easy. The open tops of the vessels make the risk of infection greater, but with proper cleaning procedures and careful protocol about who enters fermentation chambers, the risk can be well controlled. Fermentation tanks are typically made of stainless steel. If they are simple cylindrical tanks with bevelled ends, they are arranged vertically, as opposed to conditioning tanks which are usually laid out horizontally. Only a very few breweries still use wooden vats for fermentation as wood is difficult to keep clean and infection-free and must be repitched yearly.

Brewing yeasts are traditionally classed as “top-cropping” (or “top-fermenting”) and “bottom-cropping” (or “bottom-fermenting”); the yeasts classed as top-fermenting are generally used in warm fermentations, where they ferment quickly, and the yeasts classed as bottom-fermenting are used in cooler fermentations where they ferment more slowly. Yeast was termed top or bottom cropping because the yeast was collected from the top or bottom of the fermenting wort to be reused for the next brew. This terminology is somewhat inappropriate in the modern era; after the widespread application of brewing mycology, it was discovered that the two separate collecting methods involved two different yeast species that favoured different temperature regimes, namely Saccharomyces cerevisiae in top-cropping at warmer temperatures and Saccharomyces pastorianus in bottom-cropping at cooler temperatures. As brewing methods changed in the 20th century, cylindro-conical fermenting vessels became the norm and the collection of yeast for both Saccharomyces species is done from the bottom of the fermenter. Thus, the method of collection no longer implies a species association. There are a few remaining breweries who collect yeast in the top-cropping method, such as Samuel Smiths brewery in Yorkshire, Marstons in Staffordshire and several German hefeweizen producers.

For both types, yeast is fully distributed through the beer while it is fermenting, and both equally flocculate (clump together and precipitate to the bottom of the vessel) when fermentation is finished. By no means do all top-cropping yeasts demonstrate this behaviour, but it features strongly in many English yeasts that may also exhibit chain forming (the failure of budded cells to break from the mother cell), which is in the technical sense different from true flocculation. The most common top-cropping brewer’s yeast, Saccharomyces cerevisiae, is the same species as the common baking yeast. However, baking, and brewing yeasts typically belong to different strains, cultivated to favour different characteristics: baking yeast strains are more aggressive, to carbonate dough in the shortest amount of time; brewing yeast strains act slower, but tend to tolerate higher alcohol concentrations (normally 12–15% abv is the maximum, though under special treatment some ethanol-tolerant strains can be coaxed up to around 20%). Modern quantitative genomics has revealed the complexity of Saccharomyces species to the extent that yeasts involved in beer and wine production commonly involve hybrids of so-called pure species. As such, the yeasts involved in what has been typically called top-cropping or top-fermenting ale may be both Saccharomyces cerevisiae and complex hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Three notable ales, Chimay, Orval and Westmalle, are fermented with these hybrid strains, which are identical to wine yeasts from Switzerland.

There are three main fermentation methods, warm, cool, and wild or spontaneous. Fermentation may take place in open or closed vessels. There may be a secondary fermentation which can take place in the brewery, in the cask or in the bottle.

Warm Fermentation

In general, yeasts such as Saccharomyces cerevisiae are fermented at warm temperatures between 15 and 20 °C (59 and 68 °F), occasionally as high as 24 °C (75 °F), [ while the yeast used by Brasserie Dupont for saison ferments even higher at 29 to 35 °C (84 to 95 °F). They generally form a foam on the surface of the fermenting beer, which is called barm, as during the fermentation process its hydrophobic surface causes the flocs to adhere to CO2 and rise; because of this, they are often referred to as “top-cropping” or “top-fermenting”– though this distinction is less clear in modern brewing with the use of cylindro-conical tanks. Generally, warm-fermented beers, which are usually termed ale, are ready to drink within three weeks after the beginning of fermentation, although some brewers will condition or mature them for several months.

Cool Fermentation

When a beer has been brewed using a cool fermentation of around 10 °C (50 °F), compared to typical warm fermentation temperatures of 18 °C (64 °F), then stored (or lagered) for typically several weeks (or months) at temperatures close to freezing point, it is termed a “lager”. During the lagering or storage phase several flavour components developed during fermentation dissipate, resulting in a “cleaner” flavour. Though it is the slow, cool fermentation and cold conditioning (or lagering) that defines the character of lager, the main technical difference is with the yeast generally used, which is Saccharomyces pastorianus Technical differences include the ability of lager yeast to metabolize melibiose and the tendency to settle at the bottom of the fermenter (though ales yeasts can also become bottom settling by selection) though these technical differences are not considered by scientists to be influential in the character or flavour of the finished beer, brewers feel otherwise – sometimes cultivating their own yeast strains which may suit their brewing equipment or for a particular purpose, such as brewing beers with a high abv.


Brewers in Bavaria had for centuries been selecting cold-fermenting yeasts by storing (“lagern”) their beers in cold alpine caves. The process of natural selection meant that the wild yeasts that were most cold tolerant would be the ones that would remain actively fermenting in the beer that was stored in the caves. A sample of these Bavarian yeasts was sent from the Spaten brewery in Munich to the Carlsberg brewery in Copenhagen in 1845 who began brewing with it. In 1883 Emile Hansen completed a study on pure yeast culture isolation and the pure strain obtained from Spaten went into industrial production in 1884 as Carlsberg yeast No 1. Another specialized pure yeast production plant was installed at the Heineken Brewery in Rotterdam the following year and together they began the supply of pure cultured yeast to brewers across Europe. This yeast strain was originally classified as Saccharomyces carlsbergensis, a now defunct species name which has been superseded by the currently accepted taxonomic classification Saccharomyces pastorianus.

Spontaneous Fermentation

Lambic beers are historically brewed in Brussels and the nearby Pajottenland region of Belgium without any yeast inoculation. The wort is cooled in open vats (called “coolships”), where the yeasts and microbiota present in the brewery (such as Brettanomyces) are allowed to settle to create a spontaneous fermentation and are then conditioned or matured in oak barrels for typically one to three years.